Artificial Intelligence - Intermediate

In this course, you will get hands on experience with machine learning from a series of practical case studies. At the end of the first course you will have studied how to predict house prices based on house level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: Identify potential applications of machine learning in practice. Describe the core differences in analyses enabled by regression, classification, and clustering. Select the appropriate machine learning task for a potential application. Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. Represent your data as features to serve as input to machine learning models. Assess the model quality in terms of relevant error metrics for each task. Utilize a dataset to fit a model to analyze new data. Build an end to end application that uses machine learning at its core. Implement these techniques in Python.

Program Prerequisite

General Requirements:

  • University / College graduates
  • Saudi nationals
  • Excellent spoken and written English proficiency
  • Commitment to attend 5 hours/day for virtual class
  • Ensure that all information and documents submitted are accurate Have the minimum required technical knowledge for each track as specified in the application

Hardware Requirements

  • Computer running OS X or Windows.
  • Chrome Browser.

Technical Prerequisites

  • No prior experience required.
  • Navigating the Internet.
  • Basic computer skills like managing files.
  • Running basic programs will be useful